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Abstract

Since its release in 1976, Wingersky, Barton, and Lord's (1982)

LOGIST has been the most widely used computer program for estimating

the parameters of the 3-parameter logistic (Birnbaum) item response

model.. An alternative program, Mislevy and Bock's (1983) BILOG, has

recently become available. This paper compares the approaches taken

by the two programs, and offers some initial guidelines for choosing

between the two programs for particular applications.
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Introduction

The theoretical advantages of Item Response Theory (IRT)

psychometric models over classical test theory are by now well known

and appreciated in the educational and psychological measurement

communities. Among these are convenient ways to tailor tests to

individual examinees, to link tests without expensive population

equating studies, and to interpret scores in terms of predicted

behavior on specific test items (Lord, 1980). To enjoy these

benefits over a broad range of practical applications, one must have

access to sufficiently fiexible and economical computer programs to

estimate IRT parameters -- for items, for examinees, for populations

of examinees -- as an application requires. The most widely used

computer program for estimating item and person parameters under the

three-parameter logistic item response model has been LOGIST

(Wingersky, 1983; Wingersky, Barton, & Lord, 1982), based on the

joint maximum likelihood (JML) approach suggested by Birnbaum

(1968). More recently, the marginal maximum likelihood (MML)

solution proposed by Bock and Aitkin (1981) and the Bayes marginal

modal solution described by Mislevy (1986) have been implemented in

the BILOG computer program (Mislevy & Bock, 1983).

The purpose of the present paper is to compare the two

programs, with respect to their theoretical approaches and attendant
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practical consequences. We cannot hope to run comparisons on the

vast number of real and simulated datasets required to provide

specific advice across the wide variety of situations, applications,

and criteria found in practice. We can, however, outline some of

the problems which any estimation algorithm must face, describe the

character of the solutions offered by LOGIST and BILOG, and offer a

few examples to illustrate some important differences and

similarities.

The Three-Parameter Logistic Item Response Model

At the heart of item response theory is a mathematical

expression for the probability, denoted by P or P(0), that a

particular examinee with ability (or trait or skill) denoted by 8

will respond correctly to a particular test item. Under the three-

parameter logistic model for test items that are scored either right

or wrong (Birnbaum, 1968), abbreviated hereafter by 3PL, this

expression takes the following form:

Pa P(0) c +
1 - c

1 + e
-1.7a(0-b) (1)

were a, b, and c are parameters charEcterizing the item and e is the

mathematical constant. These item parameters have specific

interpretations. The c parameter is the probability that a person

7
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completely lacking in ability will answer the item correctly. It is

called the guessing parameter, The b parameter is a location

parameter. It determines the position of the curve along the

ability scale. This parameter characterizes the difficulty of an

item, in that if a and c are held constant, higher values of b

imply lower probabilities of correct response from all examinees.

The logistic curve has its inflection point at 0 b. The parameter

a is proportional to the slope of the curve at the inflection point.

This parameter characterizes the discrimination of the item, in that

probabilities of correct response to items with high a values are

more sensitive to changes in 0 in the neighborhood of the item

difficulty.

Considering Equation 1 as a function of 0 for fixed values of

a, b, and c, yields the trace line or response function of an item

(see Figure 1 for example). Assuming the veracity of the model, the

importance of the item response function lies in its validity for

each examinee regardless of any particular population with which he

or she may be associated, and regardless of any other items he or

she may be administered.

Insert Figure 1 about here
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Note that a linear indeterminacy exists in the 3PL: if

0* - AO + B, b* - Ab + B, and a* - a/A, then P(0*;a*,b*,c) -

P(0;a,b,c). Constraints must therefore be imposed on a set of

parameter estimates in order to set the origin and unit-size of the

0 scale.

Two other item response models in common use, namely the two

parameter logistic (2PL) model (Lord, 1952) and the one parameter

logistic (1PL) model (Rasch, 1960/1980), can be written as special

cases of the 3PL. All c parameters fixed at zero gives the 2PL, and

all a parameters additionally fixed at 1/1.7 gives the 1PL. (But

see Andersen, 1973, Rasch, 1960/1980, 1968, and Fischer, 1974, for

independent derivations of the 1PL model and discussions of its

special properties.)

Most of the same estimation problems arise under all three

models. We focus our attention on the 3PL because, since the 1PL

and 2PL can be expressed as special cases of the 3PL, any solution

to the problems of the 3PL applies to the simpler models as well

(although some solutions for the 1PL do not generalize to the 2PL or

the 3PL). Our purpose is not to recommend the use of the 3PL over

the 2PL or 1PL, or for that matter, over any other model for item

responses.

9
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The Theory of Parameter Estimation

Capitalizing on the advantages of Item Response Theory would be

a simple matter if true item and true person parameters were known.

A practical expedient is to estimate item and person parameters, and

proceed to use the estimates as if they were true values. LOGIST

and BILOG face identical statistical estimation problems but solve

them in different ways. Insights into these estimation problems are

important in understanding the fundamental philosophical differences

between the two procedures.

In theory, the likelihood function for the model parameters

contains all the information that the observed data convey about the

values of these model parameters. This function gives the

probability of the observed data for any permissible combination of

parameter values. A common statistical procedure is to take as

paramcnar estimates those ,alues of the model parameters that

maximize the probability of the observed data. Parameter estimates

obtained in this fashion are referred to as 'maximum likelihood

estimates' (MLE's). To find these parameter estimates for complex

likelihood functions in which explicit solutions are unavailable,

numerical methods are typically employed to search the parameter

space for locations where the first partial derivatives of the

likelihood function are zero and where the matrix of second partial

0
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derivatives is negative definite. At such locations the likelihood

function attains at least local maxima.

However, the uniqueness oglexaminee/item interactions carries

IRT outside the purview of standard asymptotic statistical theory,

which deals with the behavior of estimates of A fixed set of

parameters as the number of observations increases. Such asymptotic

theory would be applicable, for example, for the estimation of item

parameters, if examinees' true abilities were known. The response

of each additional examinee would provide additional information

about a fixed number of item parameters, whose values could be

estimated as precisely as desired by simply gathering enough

responses and waximizing the likelihood function

N n u.. 1-u.,
L(a b,c10 U) H H P,(0.) 1-/Qi(0.1) 1J

j-1 i-1 J

(2)

where

i indexes items and ranges from 1 to the number of items, n;

j indexes examinees and ranges from 1 to the number of

examinees, N;

P.(0.) is the probability of a correct response to item i by

examinee j, obtained from Equation 1;
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0 (0
j

) is 1 - P
i
(0

j
);

u.. is the observed response to item i by person j, coded 0 if

the response is incorrect and 1 if correct;

8 is the vector of known examinee abilities, one for each of

N examinees;

U is the matrix of observed item responses of all examinees

to all items;

a,b,c are vectors of item parameters, one (a,b,c) triple for

each of the n items.

However, true abilities are not known. Each additional examines

would introduce an additional parameter into the likelihood function

shown in Equation 2, therefore standard asymptotic results for MLE

estimation need not hold (Neyman & Scott, 1948). LOGIST and BILOG

approach the solution to this problem differently; LOGIST with a

joint maximum likelihood (JML) approach, and BILOG with a marginal

maximum likelihoou (MML) approach.

The Joint Maximum Likelihood Approach

The .;ML approach to estimating parameters in the 3PL originates

wiLI Zirnbaum (1968). It is described in detail in Lord (1980), and

in Wood, Wingersky, and Lord (1976). Using JML, LOGIST finds the

values of item and examinee parameters that simultaneously maximize

the joint likelihood function

12
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L (0.a b clU) H H P.(0.) 13Q.1 (0.)

3-1 1-1
3

10

(3)

where the quantities have the same meanings as in Equation 2 except

for 0, which is now a vector of unknown abilities to be estimated

along with the item parameters.

While this straightforward approach is logically appealing, a

price is paid. Except under some simplified circumstances, it is

difficult if not impossible to prove that parameter estimates

obtained using JML are statistically consistent with increases in

the number of e:aminees (N) and/or the number of items (n).

Andersen (1973), for example, shows that JML estimates of item

parameters in the Rasch model are not statistically consistent for

increasing N if n is held constant at 2. If both N and n are

increased appropriately, however, statistical consistency can be

proved for the Rasch nldel (Haberman, 1977). Simulations conducted

by Swaminathan and Gifford (1983) suggest that consistency may also

hold for the 3PL as well under the latter circumstances.

The Marginal Maximum Likelihood Approach

The application of MML estimation in IRT originates with Bock

and Lieberman (1970). The modern computing algorithms employed in

BILOG were developed by Bock and Aitkin (1981). The focus of the
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BILOG approach is to remove examinee parameters from the estimation

problem entirely and estimate only item parameters.

The probability of a correct response to an item for an

examinee with ability 9 is given in Equation 1. The marginal

probability, or the probability of a correct response for an

examinee who has been randomly selected from a population with

distribution of ability G(9) is j P(9) dG(9). If a sample of N

examinees is selected, the corresponding marginal likelihood

function for the observed data is

N n u.. 1-u.;

La(a,b,clu) 11Si:trim 1-qq(e) 1J dG(9) . (4)

j-1 i-1

The parameters to be estimated by maximizing this marginal

likelihood function are the item parameters and, if desired, the

parameters that describe the distribution of ability G. As the

number of examinees increases, the number of parameters does not.

Standard statistical theory can thus be brought to bear on

estimation problems in this marginal framework. Even for short

tests, this approach yields statistically consistent estimates of

item parameters--conditional, of course, on the veracity of the IRT

model.
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Once item parameter estimates have been obtained using this

marginal maximum likelihood approach, abilities may be estimated.

The estimated item parameters are assumed to be equal to their true

values, and BILOG can then produce MLE's of ability using Equation

2, or Bayes estimates of ability with an assumed or estimated

population distribution (Bock & Aitkin, 1981).

While the MML approach may be more appealing than the JML

approach because of its formal statistical properties, there is a

price to be paid here, too. In particular, a structure must be

assumed for the distribution of abilities in the population of

examinees. If either the IRT model of the probabiLity of a correct

response given examinee ability or the assumed model for the

distribution of ability in the population are incorrect, the

attractive statistical properties fail to hold.

Item Parameter Estimation Using Response Data Alone

The straightforward application of either Birnbaum's JML

approach to parameter estimation or Bock and Lieberman's or Bock and

Aitkin's approach cannot be counted upon to yield finite and

reasonable item and person parameter estimates. This is so for two

reasons discussed in detail in a later section. First, the

unthinking application of numerical methods to find maxima of

extremely complex functions of many variables is rarely successful.
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Second, the likelihood surfaces over, which maxima are sought can be

very flat, with true maxima at unreasonable values of item

parameters. However, regions of the likelihood surfaces only

slightly lower than the true maxima may occur at reasonable values

of thk,e parameters. LOGIST and BILOG depart from the original JML

and MML approaches, and they usually do provide finite and

reasonable parameter estimates. They are able to do so by employing

not only the assumed IRT model and the observed response data but

also prior information (or perhaps, prior beliefs or even prior

wishes) about how parameter estimates should look.

In this section we discuss the LOGIST and BILOG approaches to

the estimation of item parameters alone using only the observed

response data. In subsequent sections we will discuss item

parameter estimation that uses information in addition to that

provided by the observed response data, and the approaches to

ability estimation incorporated in the two programs.

The LOGIST Approach

If requested to estimate item parameters from item response

data alone, LOGIST would find estimates of parameters for each item

and for each examinee that maximize Equation 3. At this location,

3n equations for the partial derivatives of Equation 3 with respect

to the item parameters, and N equations for the partial derivatives

6
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of Equation 3 with respect to the abilities, are zero. In addition,

the second derivative for each 0 is negative, and the 3-by-3

matrices fog the parameters of each item are negative definite. The

formulas for the first and second partial derivatives for the 3PL

are presented in Lord (1980, Chapter 12).

In principle, the solution could be found by Newton-Raphson

iterations involving all item and examinee parameters at once.

However, based on considerations of cost and accur.:.,zy, it is usually

impractical to invert the required matrix of second derivatives. By

default, LOGIST instead arranges the estimation procedure into a

series of four subproblems or steps of the form summarized in Table

1. (The additional item parameter COMC appearing in this table is a

maximum likelihood estimate of a common c parameters for all items

that contain little information about their lower asymptotes; more

about this in a later section.) This arrangement improves the

overall stability and computational efficiency of the procedure by

insuring that the subproblem solved in each step is reasonably well

determined. A brief summary of the procedure follows: details can

be found in the LOGIST User's Guide (Wingersky, et al., 1982).

Insert Table 1 about here

1 7
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In Step 1, examinee ability and the most well-determined item

parameter, b, are estimated while the a and c parameters are held

fixed. Within this step, stages alternate between estimation of b

for all items and of thetas for all examinees until a loose

criterion (default 200%) for the increase in the likelihood function

between stages is met. Examinees with no correct or all correct

responses on all items reached by that examinee are excluded from

the estimation procedure. Examinees for whom the maximization

process yields an infinite ability estimate are assigned floor and

ceiling values. Extrapolation procedures are employed for item

difficulties from blocks of items to speed convergence when the

observed data matrix is structured so that not all examinees take

all items.

In Step 2, the estimated abilities are held fixed at the values

obtained in Step 1. Item parameters, including COMC, are estimated

within stages of this Step until a slightly tighter criterion

(default 20%) for the increase in the likelihood function is met.

By waiting until Step 2 to estimate the a and c parameters, which

are more difficult to estimate, the iteration process is more

stable.

Step 3 is a repetition of Step 1 with a tighter convergence

criterion. Step 4 is a repetition of Step 2 with an even tighter

J8
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convergence criterion, with the exception that COMC is not

reestimated. LOGIST resolves the linear indeterminacy of the 3PL by

standardizing the estimated abilities between the range of -3 to +3,

so that the abilities within that range have a mean of zero and a

standard deviation of one.

Maximizing values of Equation 3 are the JML estimates, three

for each item and one for each examinee. LOGIST estimates are

approximations to JML estimates because the four-step procedure does

not give complete convergence to JML estimates, and subsequent

repetitions rarely provide sufficient improvement to justify the

cost.

Neither JML estimates nor the LOGIST approximations to them

have been proven to be statistically consistent, but some simulation

studies (Swaminathan & Gifford, 1983) suggest that the JML estimates

for the 3PL do appear to behave better as both test length and

examinee sample sizes increase. Better behavior for increased test

Length is not surprising when one considers the nature of LOGIST

estimation cycles. In the steps in which the item parameters are

estimated, examinee parameters are treated as known, whereas they

are in fact only estimates. The fewer responses used to estimate an

examinee ability, the more likely it is to depart from the true

value. This discrepancy is likely to be worse for very high or very

19
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low scoring examinees, yet all estimates are treated equally.

Theory and common sense thus agree that JML is less satisfactory

when examinees respond to few items. The authors of LOGIST advise

the user to restrict its use to data with at least 20 items per

person and at least 800 to 1000 examinees responding to each item.

Given that JML estimates do not meet the conditions necessary

for standard maximum likelihood results, rigorous theoretical bases

are not presently available for either tests of model fit or large-

sample standard errors. Nevertheless, the matrix of second

derivatives from which, under standard MLE procedures, the variation

of estimates around their true values is forecast, can be computed.

It becomes an empirical question as to whether, in this situation,

these forecasts of variation of estimates around their true values

is practically useful. Wingersky and Lord (1984) investigated this

question and demonstrated that empirical standard errors were in

good accord with those predicted by standard maximum likelihood

results.

The BILOG Approach

If requested to estimate item parameters from response data

alone, BILOG would find those values of the item parameters that

maximize Equation 4. In principle, this maximum can be found by

proceeding in a series of Newton-Raphson steps that involve the

0 0
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vector of first derivatives and the matrix of second derivatives for

all item parameters. Such a straightforward solution was first

presented in Bock and Lieberman (1970). However, this solution

becomes impractical for more than about 20 items.

Bock and Aitkin (1981) reexpressed the required first

derivatives in a way that led to a more practical computing

algorithm. In the Bock-Aitkin development, the population ability

density G in Equation 4 is approximated by a step function with

jumps at a finite number of points. Adopting the vocabulary of

numerical integration methods, these points are referred to as

'quadrature' points.

Estimation proceeds under the simplifying assumption that the

only values examinee abilities can take are those represented by the

quadrature points. Although the value associated with a particular

examinee is not known, the probabilities that it takes each of the

possible values can be calculated via Bayes theorem from the

examinee's response vector, the item parameters, and G. This set of

probabilities is called a posterior distribution of an examinee's

ability. Having done this, one can maximize the expected value of

the log of Equation 2.

To obtain the expected value of the log of Equation 2, however,

means that we must know the item parameters and G. The point of the

er"
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exercise, of course, is that we do not know the item parameters, and

may not know G either. In iterative cycles, however, one can

recompute the desired expected value with updated estimates of the

values of item parameter estimates and, if desired, G, that

maximized the preceding expectation. These are exactly the steps of

the EM algorithm (Dempster, Laird, & Rubin, 1977), in the special

case of 'missing multinomial indicators' since abilities are assumed

to take on only a finite number of values.

Since the progress of the EM-algorithm can be very slow,

convergence is hastened by Ramsay's (1976) acceleration method,

applied to each estimated a and b separately. After a set number of

EM cycles (10 default) or sufficiently small changes in estimates of

a, and the product of a and b (called the 'intercept') a final

Newton-Raphson step is taken to find the maximum of Equation 4 and

provide standard errors for item parameter estimates.

The key idea in the MML solution is that the uncertainty

associated with each examinee's unknown ability is accounted for by

effectively spreading his or her ability across potential values it

might take, in accordance with the probabilities given by the

posterior distribution. To do this successfully, one should have

enough quadrature points to ensure that the typical examinee's

posterior distribution is nontrivial for at least 3 or 4 points.
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The greater the number of items taken by an examinee, the more

concentrated the resulting posterior distribution, so more

quadrature points are needed as the number of items taken by an

examinee increases. BILOG defaults to using 10 quadrature points

for 50 or fewer items per person and 20 quadrature points for more

than 50 items per person.

The shape of the population distribution G may be either (1)

assumed normal; (2) fixed at values specified by the user; or (3)

estimated 'concurrently with the item parameters (an empirical

prior). The linear indeterminacy of IRT models is resolved by means

of constraints upon the estimated densities at the quadrature

points. If G is assumed normal or specified by the user, these

densities are specified as fixed from the start of :he estimation

procedure. If G is estimated concurrently with the item parameters,

the quadrature points and item parameters are readjusted by a linear

transformation that standardizes the estimated examinee population

distribution.

MML estimates of item parameters meet the conditions necessary

for standard maximum likelihood results. Thus test of model fit and

large-sample standard errors are available from BILOG. However,

these depend upon the assumption that the population distribution G

is correctly specified and Consistently estimated with only a finite

4.3
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number of parameters. This assumption is usually more nearly true

if G is estimated simultaneously with the item parameters. Initial

evidence suggests that the use of the normal prior, which leads to

more rapid convergence, introduces little bias into item parameter

estimates or large-sample standard errors (Bock & Aitkin, 1981) but

more study of this issue is required.

Item Parameter Estimation Using Information External

to the Response Data

Under the 3PL (and also the 2PL), the item parameter values

that maximize the JML or MML likelihood function need not be either

finite nor reasonable. If finite and reasonable estimates are

required, then this requirement must be included in the estimation

routine. Resulting estimates will depend not only upon the data and

the model, but at least partly upon the method and the strength with

which prior beliefs about how item parameter estimates 'ought to'

look. In this section we discuss first the nature of problems

encountered by the 3PL estimation procedures described in the

previous section that use only the observed response data. We tnen

describe the approaches used by LGGIST and BILOG in incorporating

information in addition to the observed response data to handle

these problems.
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Problem 1: Infinite Item Parameter Estimates

As early as 1931, Heywood pointed out that some correlation

matrices in accordance with a linear factor analysis model lead to

zero or negative values for unique variances. 0.asional "Heywood

cases" are a familiar, if unwelcome feature of maximum likelihood

factor analysis, both of measured variables and of dichotomous

variables in the IRT extension of the Thurstonian paradigm (Bock,

Gibbons, & Huraki, 1985). The 2PL model with an assumed normal

distribution for examinee ability is nearly identical to a one-

factor model for dichotomous variables, with the item discrimination

inversely related to a corresponding unique variance. The same

relationship holds between the a parameters in the 3PL and

uniquenesses in a factor analytic model with a lower asymptote. As

the unique variance for an item approaches zero, as in a Heywood

case, a becomes infinite. After fifty years' experience with factor

analysLa, it comes as no surprise to find that the maximizing values

for item discriminations under the 2PL or the 3PL are sometimes

infinite.

It has been speculated that without constraints upon their

values, at least one a will become infinite in the attempt to fit

the 2PL or the 3PL to any set of response data (Wright, 1977). The

reader is invited to verify that not all datasets lead to infinite
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ML solutions by fitting the 2PL to the data in Table 2 by JML. The

fact that some datasets do not yield infinite estimates offers

little comfort, however, as long as others do. Infinite parameter

estimates are neither plausible nor useful. Additional information

or structure is required to obtain estimates that may be less likely

(i.e., do not maximize the likelihood function), but more

satisfactory.

Insert Table 2about here

Problem #2: Multicollinearity

Even when constrained item parameter estimates under the 3PL

are finite, they need not be reasonable. It is easy to see how this

can occur. While an item response function traces the probability

of a correct response across the entire range of ability, data are

available in only a limited region: the neighborhood in which the

abilities of the sample of examinees lie. Even if the true

abilities were known, only an approximation of the response curve

would be observed, and only in this neighborhood. The data have

nothing to say about probabilities of correct response elsewhere.

JML and MML procedures find the item parameter estimates that best

describe proportions of correct response in this neighborhood, and

26
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can make statements about probabilities outside the neighborhood

only because the resulting curve is required to be 3PL.

When the neighborhood is small or when the item is relatively

easy or difficult for the sample of examinees, a variety of

apparently discrepant (a,b,c) triples can capture the data nearly

equally well but disagree about what happens where there are no

data. Figures 2a and 2b show two items with data fit well within

the neighborhood of (-1,+1) by two (a,b,c) that would lead one to

different conclusions about the nature of the items.

Insert Figures 2a and 2b about here

This phenomenon is reflected numerically by a poorly

conditioned matrix of second derivatives, which must be inverted in

the Newton-Raphson steps taken by both LOGIST and BILOG. This

matrix describes the surface of the likelihood function being

maximized with respect to the three parameters of a given item.

Near singularity implies that this surface is changing very

gradually and therefore a local maxikm is difficult to find. In

extreme cases, the surface is not changing at all, in which case

there is no local maximum and the solution fails entirely.



LOGIST and BILOG

25

Methods of Incorporating External Information

A Bayesian solution to item parameter estimation incorporates

external information through the imposition of prior distributions

on item parameter estimates. Such priors can reflect such beliefs

as "the c parameters for items that cannot be estimated from the

data are probably similar to those that can be" and "1000 is not a

reasonable value of an a parameter." A prior distribution itself

can have 'higher-level' parameters, either specified a priori or

estimated from the data at hand.

The posterior probability distribution of the item parameters

is given by the product of the likelihood function (either JML or

MML) and the prior distribution for the item parameters. Bayesian

modal estimates of item parameters are those values that maximize

the posterior probability. Bayesian modal estimates have been

developed for the JML by Swaminathan and Gifford (1983) and for the

MML by Mislevy (1986). The large-sample properties of modal

estimates are determined by the large-sample properties of the

likelihood functions, either JML or MML, used to obtain them. Thus

indices of fit and large-sample standard errors formally hold for

the Bayesian extension of MML but are not formally supported for JML

(see Lewis, 1980).
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Unless previous analyses provide concrete information about the

values of item parameter estimates, it is reasonable to enforce

fairly unobtrusive prior distribution: Parameters estimable from

the observed data alone would then receive Bayes estimates that were

similar to their maximum likelihood estimates. Infinite and extreme

estimates would be pulled in to finite and reasonable values.

Similar effects can also be achieved informally through constraints

upon the maximum likelihood procedure. The practical problem under

both formal and informal Bayesian solutions is to specify priors or

procedures that give rise to the desired outcome, that is, an

appropriate balance between e:..ternal information and information

from the observed response data itself.

The LOGIST Approach

LOGIST approaches the problem informally, in part by employing

simple constraints to handle extreme item parameter estimates.

Floors and ceilings are specified for the values that estimates of

a and c can take; .01 and AMAX are floor and ceiling values for the

a parameter, 0 and .5 are floor and ceiling values for the c

parameter. This is equivalent to specifying a uniform prior

distribution on the intervals (.01,AMAX) for a, and (0,.5) for c.

If neither a nor c for an item exceeds a boundary in a given cycle

with provisionally fixed values of ability estimates, then none of
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the item's parameter estimates will be affected by this prior. If

one or more estimates do exceed the boundary, they are assigned the

boundary values and the remaining estimates for that item are values

that maximize the likelihood function with these values fixed at the

boundaries. Boundary values affect the next cycle's ability

estimates, so that the parameter estimates for all other items and

all examinees are affected, though probably minimally, whenever a

single parameter estimate for any item takes on a boundary value.

While LOGIST provides default boundary value settings, the

manual shows how to estimate boundary values that can be more

appropriate for a given set of data, by using a partial run of the

program. For item discriminations, for example, the user is advised

to examine a frequency distribution of estimates from the partial

run. If there are many more estimates equal to the provisional AMAX

than there are slightly less than the provisional AMAX, the

suggestion is made to raise AMAX before continuing the run to

completion. If there are estimates equal to AMAX and this value is

substantially above the next lowest estimate, the suggestion is made

to lower AMAX before continuing the run to completion. Such simple

procedures informally incorporate the user's beliefs not clay about

reasonable values for item parameter estimates, but also about

reasonable distributions of these values. Such procedures, in which
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individual values are estimated with respect to a population

distribution that is estimated simultaneously from the same data,

have been called hierarchical Bayesian models when a formal Bayesian

framework is used to estimate the population distribution (Lindley &

Smith, 1972) and empirical Bayes models when it is not. Note that

when these ideas are employed to obtain reasonable estimates,

expected estimates for a given item can depend upon the other items

in the test.

Another LOGIST constraint upon estimates of c can also be

thought of in an empirical Bayes framework: the MLE estimate of a

single common value (COMC) for the c parameters of all items whose

provisional estimate of the quantity b-2/a falls below a specified

criterion. In this way, limited information for individual c's is

pooled to provide a single, better-determined, common estimate.

(The index b-2/a is heuristically justified by the observation that

less information is available in the response data for estimating c

for an item that is easy and not very discriminating. The default

criterion value of the index is -2.5.) Because the c values in

question are poorly determined by the response data, restricting

them to a common value estimated from the data decreases the

likelihood only modestly. If poorly determined c's were not so

restricted, severe multicollinearity would result and the poorly

3
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determined c would have a large (and undue) influence upon the

estimates of the a and b parameters of the items involved. By

reducing multicollinearities among a, b, and a poorly determined

individual c in this manner, it is likely that better (lower mean

squared error) estimates of a and b will be obtained.

A final LOGIST procedure having Bayes-like effects is the

imposition of the structure of estimation steps described earlier.

With each step, estimates generally depart further from their

starting values in the direction of the JML solution. Terminating

early gives an informally weighted average of starting values and

JML estimates. Since within-cycle constraints tend to restrain

step-sizes in cases of near-collinearity or extreme values, limiting

the number of steps tends to weight the JML estimare.s less heavily

for items with less information than items with more information.

The failure to attain complete convergence to JML estimates, then,

may in fact prove advantageous, informally shrinking poorly

determined estimates towards their apparently reasonable starting

values.

The BILOG Approach

'CLOG incorporates information external to the observed

response data by using a formal Bayesian framework. By default,

BILOG implements prior distributions on all item parameters under

1-1
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the 3PL. The normal distribution is used for the b's, the log-

normal for the a's, and the beta for the c's. Priors may be omitted

for some or all types of parameters if desired, and the parameters

of the prior distributions may either be specified by the user or

partially estimated from the data. This latter approach, termed

'floating priors' is the BILOG default. The effect of using

floating priors is that all parameters of a given type shrink

towards the mean of that type with a predetermined strength, while

that mean is estimated from the data (see Mislevy, 1986, for

details).

In this formal approach to incorporating external information,

the estimation equation for an individual item parameter is the sum

of two terms. The first term is the contribution from the

likelihood and this contribution increases with sample size. The

s-xond term is the contribution from the prior and remains constant

with respect to sample size. Shrinkage towards the (possibly

estimated) mean of parameters of this parameter type therefore

decreases as sample size increases.

Default specifications for the strength of the priors are a

standard deviation of 2 for b's, a standard deviation of .5 for log

a's, and a weight of 20 responses from low ability examinees for

c's (see Swaminathan & Gifford, 1983, for details on using the beta
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prior in this way). Early experience with BILOG indicates that the

effects of these default priors are minimal for b parameters. These

are the item parameters most easily determined from the observed

data. Even when the sample of examinees is small, say under 500,

the prior has little influence on the estimation of item difficulty.

Stronger shrinkage towards their respective means is observed for

the a and c parameters as sample size decreases. With extremely

small samples, say, under 100 examinees, a model is approached in

which all the a parameters and all the c parameters have nearly

equal common values. This gives, in effect, not a 3PL model, but a

"(n + 2)/n" PL model.

The cost of obtaining more reasonable estimates by

incorporating formal prior distributions (some of the features of

whicl may be estimated from the data at hand) is twofold. First, as

with the more informal LOGIST constraints, the expected estimates

for a given item depend upon the characteristics of other items in

the test. Second, the prior information may not be appropriate for

the data, biasing estimates of poorly determined item parameters.

The prior on c is a case in point. BILOG assumes a common

distribution for c parameters; its mean is determined primarily by

well-estimated c's. All c's shrink towards this value. If the true

values of poorly determined c's depart from this common mean, their

r%
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estimates will be biased accordingly. Such biases are reduced with

higher-level parameters are estimated from the data, arguing for

'floating' rather than 'fixed' prior distributions in item

parameters unless strong prior information truly exists.

Ability Estimation

Most applications of IRT aim to make statements about the

abilities of individual examinees for the purpose of classification,

selection, or placement. Both LOGIST and BILOG offer provisions for

estimating individual abilities, either in the same run as item

parameters are estimated, or with respect to previously-estimated

item parameters. In either case, the item parameters are treated as

known (see Lewis, 1985, and Tsutakawa, 1986, on taking into account

the uncertainty associated with item parameter estimates).

We have seen that maximum likelihood estimates of ability are

integral to LOGIST's JML inspired item parameter estimation. Point

estimates of abilities and item parameters are jointly obtained that

(approximately) maximize the fit of the specified model to the data,

as gauged by the joint likelihood function. Point estimates of

ability do not arise during the course of BILOG's item parameter

estimation; they are calculated, if requested, in a separate program

phase, after any item .calibration that may be performed. MLE's are

one BILOG option; Bayes mean estimates, more sympathetic to the MML
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approach to item parameter estimation, are another. We now describe

briefly the procedures by which LOGIST and BILOG produc4 point

estimates of ability for a given examinee with a particular response

pattern, assuming the item parameters are known.

Maximum Likelihood Estimates

Both LOGIST and BILOG are able to produce maximum likelihood

estimates of ability. For a given set of item parameters and

response patterns, LOGIST and BILOG estimates will differ from each

other only insofar as the details of the two numerical procedures

are different. Lord (1980, Page 54, Equation 4-20) is the

likelihood equation both programs solve for ability. Both use

Newton-Raphson iterations flJm a starting value based on a

standardized percent correct adjusted for guessing. If a

provisional value of estimated ability is far from the maximizing

value, Newton-Raphson steps can diverge. Both programs reduce this

possibility by limiting stepsize and forcing steps to be in the

direction that increases the likelihood. If the number of items to

which an examinee has responded is large, the MLE estimated ability

for an examinee is approximately normally distributed, with mean

estimated ability equal to the true ability and large sample

variance given by Lord (1980, Page 71, Equation 5-5).
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A unique finite maximum exists under the 3PL for most response

patterns above chance level, although multiple maxima are

occasionally encountered. This is more likely to happen with short

tests, and is often associated with response patterns in poor accord

with the model. A more extensive and :ime consuming grid search

would be required to find the global maximum in such cases; neither

LOGIST nor BILOG currently do so.

For response patterns yielding infinite MLE's, BILOG provides

floor and ceiling values of -4 and +4, flagging such values with a

'dummy' standard error of 999. LOGIST implements a more complex

procedure. If abilities are being estimated from previously

estimated item parameters, examinees with zero and perfect scores or

examinees that answered only a few items may be included in the

estimation. Infinite ability estimates will then be set at default

or user specified boundary values. In the more typical LOGIST run,

where item and ability parameters are estimated simultaneously, more

constraints are imposed s5nce ability estimates will be used in the

next cycle of item parameter estimation. In this case, by default,

examinees with zero and perfect scores and examinees who answered

fewer than 1/3 of the items presented to them are assigned the

'dummy' abilities of -999999, +999999, and -333333 respectively, and

excluded from the estimation of item parameters. Examinees who do

r
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not fall into these three categories but whose estimated ability

tends to become infinite are given default boundary values of -7 and

+4. These default values, which may be changed by the user, were

chosen because abilities below -7 have almost no effect on the value

of the likelihood function, and +4 is higher than ability estimates

typically obtained.

Bayes Estimates

Bayes estimates of ability can be produced by BILOG. As a

byproduct of BILOG item parameter estimation, one obtains expected

values of the density of the examinee population at each of the

quadrature points. The posterior probability that an examinee

ability is equal to a particular quadrature point can then be

obtained from this information. One can then summarize what is

known about an examinee in terms of a Bayes mean estimate, i.e., the

mean of this estimated posterior distribution, and its associated

standard deviation. Bayes mean estimates are sometimes called

'expectation a posteriori' or EAP estimates.

Properties of EAP estimates are described by Bock and Mislevy

(1982). By using a population distribution in the course of ability

estimation, finite values are obtained for all response patterns,

including those that yield infinite MLE's. The reasonableness of

EAP estimates obtained for these response patterns depends upon the
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reasonableness of the population distribution that is employed. An

empirical estimate of the examinee distribution accumulated in the

course of item parameter estimation would be quite appropriate for

this purpose if the calibration sample were in fact representative

of a population of interest, but less so if it were not. For

example, reasonable estimates would result for point estimates of

zero scores of third graders if an estimate of the third-grade

population distribution were employed. However, overly high

estimates would probably result if a fifth-grade distribution were

used.

A Comment on Estimating Ability Distributions

Consider the problem of estimating the distribution G of

ability in a population of interest, from the item responses of a

sample of examinees. It is somewhat paradoxical that the

distribution of ability estimates, each of which is in some sense

optimal for the particular examinee, is not necessarily a good

estimate of G. Maximum likelihood estimates tend to have too large

a variance; Bayes estimates have too small a variance. Increasing

test length decreases the discrepancies, but for an; test of fixed

length, the distribution of point estimates of ability from either

LOGIST or BILOG will not converge to the true distribution of

ability as the number of examinees increases without bound.

n9
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Methods of estimating G directly are described by Andersen and

Madsen (1977), Mislevy (1984), and Sanathanan and Blumenthal (1978).

Mislevy's histogram solution for G is approximated in BILOO,

although the solution is run to effective convergence of item

parameters, not G. In order to have point estimates of ability for

each examinee that yield a consistent estimate of G, one would have

to sample a value at random from the posterior distribution of each

examinee. This would provide a crude Monte Carlo approximation of

the integral equations employed in the direct solutions of G

mentioned above. Hence the paradox: a consistent estimate of G

from point estimates for each ability would require these 'noisy'

estimates that are decidedly nonoptimal for each examinee considered

individually.

Additional Considerations

The preceding sections have dealt with the foundations of the

approat.aes by which LOGIST and BILOG produce estimates of item and

person parameters. This section deals with some miscellaneous

topics that may be of interest to the prospective user.

Handling Missing Responses

For convenience of presenta-ion, the preceding discussions have

assumed that all examinees responded to every item under

consideration. This situation is frequently not realized in

40
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practice, sometimes by reasons intended by the researcher and

sometimes not. LOGIST and BILOG handle these situations in the same

ways. Methods of handling three types of nonresponse are

incorporated in both programs.

Most easily dealt with are potential examinee/item combinations

that are missing by design. Different examinees may take different

forms of overlappir, tests, for example, so that they have no

opportunity to provide responses to items not presented to them. It

is intuitively clear that these occurrences of nonresponse can be

ignored for the purpose of maximum likelihood and Bayesian

estimation of item and examinee parameters. It is less obvious, but

true nonetheless, that ignorability may continue to hold when

patterns of nonresponse might be related to ability or item

parameters. If these patterns of nonresponse are determined wholly

by previous observable responses, as in adaptive testing, then they

remain ignorable (Mislevy, 1985). Both LOGIST and BILOG allow the

user to encode a 'not presented' indicator for a given examinee on a

given item. All calculations are then carried out with respect to

only those item/examinee combinations realized in the sample. This

feature proves convenient for linking tests through common items.

Less clear cut is how to handle responses to items an examinee

was presented, but did not reach due to time limitations. A fully
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satisfactory treatment of this phenomenon. would require an extended

model with an ability parameter and a speed parameter for each

examinee. All models allowed by both programs assume nonspeeded

testing conditions, so arbitrary decisions must be made about how to

handle these observations. The options available to the user are to

code such item/examinee combinations as 'not presented', so that

they will be treated as if they were missing by design; as 'wrong'

because they have not been answered correctly; or as 'partially

correct' (see below). The first option is most usual; some

empirical evidence suggesting its reasonableness has been provided

by van den Wollenberg (1979).

Finally, and most troublesome, are the items an examinee has

obviously encountered and decided to omit. Encoding these

observations as wrong is palatable for free response items, but less

so for multiple choice items. Had the examinee guessed at random,

as others with equally little knowledge have undoubtedly done, a

positive probability of a correct response would have resulted.

Lord (1983) has suggested for such data a model with two examinee

parameters, one for ability and one for a propensity to omit rather

than guess at random when confronting an item for which they feel no

preference among response alternatives. The best one can do in

LOGIST and BILOG is to treat such observations as partially correct,

42
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with the weight of the reciprocal of the number of alternatives to

the item. This leads in expectation to the same results as

replacing each omit by a randomly assigned response (Lord, 1974).

If examinees omit only when their probability of responding

correctly is the chance value, modifying the JML and MML likelihood

functions in this manner gives the expectations of the corresponding

functions that would obtain had there been no omits, conditional on

the' observed pattern of omissions (Mislevy & Wu, 1987).

Scaling Issues

By default, both LOGIST and BILOG resolve the indeterminacy in

the 3PL's 8 scale by standardizing estimates with respect to the

A

calibration sample of examinees -- LOGIST using 8 between -3 and +3,

BILOG using the estimated 8 distribution. If a single test is

calLbrated twice by either program using two different samples of

examinees, the resulting scales will differ, i.e., the two BILOG

scales will differ and the two LOGIST scales will differ, as a

function of differences in the averages and dispersions of ability

in the two samples, as well as in the sampling variation generally

associated with any estimation procedures. A linear transformation,

found by a procedure such as Stockingiand Lord's (1983), puts the

two sets of LOGIST estimates on approximately the same scale; or the

two sets of BILOG estimates on approximately the same scale;
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remaining differences can be attributed :xi estimation errors of

various types.

A second scaling issue of practical importance arises from a

subtle but fundamental difference between the JML procedure used by

LOGIST and the MML procedure used by BILOG. BILOG estimates the

parameter of the distribution of ability from which the sample of

examinees was drawn; increasing the number of examinees kicreases

the accuracy of the estimates of thi., population distribution.

LOGIST estimates an individual ability for each examinee; increasing

the number of examinees increases the number of estimated abilities

thereby increasing the accuracy of the distribution of estimated

ability. But the relationship between an estimated distribution of

ability and an estimated distribution of estimated ability is

nonlinear in a way that depends on test length and item parameters.

Even after applying the transformation described above, nonlinearity

remains between the scales from BILOG and LOGIST runs, or between

LOGIST runs with appreciably discrepant tests or examinee samples.

Assuming items are appropriate for the examinee sample, this

nonlinearity becomes negligible only if (1) the test is long enough

so that estimated abilities are indistinguishable from true

abilities and (2) examinee sample sizes are large enough so that the

4 4
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distribution of these estimated abilities can be accurately

obtained.

Incorporating the Results of Previous Runs

Both programs save files of parameters that can be input to

subsequent runs, either for all parameters or reduced parameter

sets. In addition, steps can be taken to constrain the estimates of

selected parameters without constraining those of other parameters,

as would be done, for example, when calibrating new items onto an

existing scale.

LOGIST accomplishes this by allowing the user to hold selected

parameters for any item fixed at user provided values. It is also

possible to estimate item parameters conditional on fixed ability

estimates from a previous run. BILOG allows the user to place

different priors on the parameters of different items. If previous

analyses were available for a subset of items, one could employ

priors with means based on the previous estimates and dispersions

based on the standard errors of those estimates. Weak priors would

then be imposed on the new items.

Diagnostic Information

Both LOGIST and BILOG provide information on the progress of

the numerical procedures invoked. This type of information is vital

if the user is to monitor the successful completion of the program.

40
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Strictly speaking, of course, it is a foregone conclusion that the

IRT models that LOGIST and BILOG use will never fit data exactly.

More aid to the user about the nature of lack of model fit would be

welcome in both programs. This area deserves greater emphasis in

IRT more generally.

After each iteration and for the final solution, BILOG provides

the value of -2 times the log of the likelihood factor of the

criterion function. The criterion function is the product of the

prior distribution for item parameters if there is one, and the

appropriate marginal likelihood function--i.e., if omits are not

given partial credit, the actual MML likelihood; if they are, the

expectation of the complete-data MML likelihood, conditional on the

observed pattern of omissions. As the number of examinees

increases, the behavior of the criterion depends increasingly on

just the likelihood term. In large samples, differences between

values obtained under the 1PL, 2PL, and 3PL are approximately chi-

square under the assumption that the more restrictive of two models

being compared is correct. The degrees of freedom is the number of

additional parameters estimated in the less restrictive model. For

tests of ten items or fewer, when all examinees have taken all items

without omits, a chi-square test against the general multinomial

alternative is also given. The limiting distributions for both

46
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indices are approached less rapidly if priors are employed for item

parameters. While the corresponding chi-square distributions

generally provide a guideline to gauge the degree to which estimates

maximize the likelihood term, the strict interpretation of

associated probability levels may not be justified for small samples

of examinees (particularly if priors are employed for item

parameters).

We strongly recommend that every calibration of item and person

pw:ameters be examined by means of plots of observed verses.

predicted item/ability regressions, as described in Kingston and

Dorans (1985). No other check on model fit provides such

satisfactory guidance in the detection of (possibly) correctable

fitting problems. Through this mechanism the user can detect

unsatisfactory limits on values of parameter estimates for LOGIST or

unsatisfactory priors placed on some items for BILOG. These are

conditions that are potentially correctable by rerunning either

program with new settings. Such plots can also be useful in

identifying items for which the observed proportions correct are

nonmonotonic or have an upper asymptote other than one. These

problems are not correctable since these items cannot be well fit by

the logistic item response model. The user may wish to eliminate

these items from a second run of the data.

47
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It may also be useful to examine pseudo-chi-squares (Yen,

1981). These statistics do not actually follow a chi-square

distribution, but may be useful as a rough guide in interpreting the

severity of model departures. BILOG provides line printer plots and

pseudo-chi-squares of this type. Their usefulness appears limited

with short tests (fewer than, say, 15 or 20 items) because they

require treating ant estimates of abilities as known quantities

Both programs lack two other potentially useful diagnostic

tools. One would be the residuals from item/ability plots with

different symbols to distinguish different subgroups of examinees.

These plots could demonstrate differential item performance with

respect to gender or ethnicity groups, educational treatments, or

points in time. A second would be residuals computed from the

matrices of observed interitem correlationt, and those predicted by

the IRT model (McDonald, 1980). An examination of such a matrix

could suggest additional factors or lack of conditional independence

among subsets of items.

Ease of Use (or Lack Thereof)

Neither LOGIST nor BILOG is particularly easy to learn to use.

It is an irrefutable fact that in order to obtain consistently

satisfactory results with either program, the user must possess a

fairly high degree of knowledge about what the program is trying to
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do and how it goes about trying to do it -- a level at least equal

to that of the present article. The reason for this is that the

assumed model and the observed response data are not sufficient to

guarantee 'reasonable' results under the 3PL. Both programi offer

default settings that get the novice started, but knowledgeable

application of the model requires informed troubleshooting skills,

and, as often as not, a second or even a third run to improve the

solution.

A Numerical Example

We have noted that it is not possible within the scope of this

paper to compare the behavior of LOGIST and BILOG with a wide

variety of item and examinee parameter combinations, nor to hunt out

possibly subtle effects on applications such as equating and

adaptive testing. What we can do is to illustrate an application of

the programs to two simple simulated datasets, and examine costs and

recovery of generating parameters. The results pertain to the

program versions publicly available at the time of this writing,

LOGIST 5 and BILOG 2.2.

The Data

We analyzed responses from simulated examinees to an artificial

test containin45 items comprised of three replications of 15 four-

choice items. Generating values of item parameters and of abilities
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for 1500 examinees were obtained by applying LOGIST to a typical

form of the Test of English as a Foreign Language (TOEFL) and using

the LOGIST estimates as generating ("true") parameters for the

simulation. (We postpone until later the question of whether this

method of generating data--or, for that matter, any other method- -

produces a 'fair' comparison of the programs.) Item response data

were then generated by first computing the model probability of a

correct response to each item/examinee combination, then assigning

it a correct response if a random number selected from the unit

interval did not exceed this probability. Two simulated tests were

analyzed: a 15-item test consisting of one replication of the

generating item parameter set, and a 45-item test consisting of all

three replications

Both LOGIST runs had the following specifications:

1. The maximum for the a parameters was set to 1.5.

2. Abilities were restricted to the range (-7,+4).

3. Individual c's were estimated only for items with b - 2/a >

-3.

4. The default 4-step estimation procedure was used.

Item and examinee parameter estimates are produced automatically.

To compare the resulting estimates with the generating values, the

results of both LOGIST runs were transformed to the scale of the

50
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generating values using the Stocking and Lord (1983) procedure to

optimize the congruence of the true and estimated test

characteristic curves.

Both BILOG runs had the following specifications:

1. A standardized ability distribution was estimated jointly

with the item parameters.

2. Ten quadrature points were used.

3. Default specifications of prior distributions were employed

for item parameters of each type, so that the locations

were estimated from data and the dispersions were fixed at

the program defaults.

4. Default values controlled the number of cycles and the

convergence criterion.

5. To facilitate cost comparisons for different types of data,

two different data storage methods were used in each

problem. One uses a faster algorithm that is applicable

only to data for which all examinees take all items without

omits; the second, slower, algorithm must be applied when

omits and/or not-presented items can occur.

6. Bayes (EAP) ability estimates were produced for each

examinee. While these are not required to obtain item
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parameter estimates, the typical user would probably ask

for them.

Results

Comparisons of the LOGIST and BILOG item parameter estimates

for the 45-item test with the true values are shown in Figures 3

through 5. Both procedures appear to recover the true parameters

equally well. Examinee parameter estimates are shown in Figure 6.

As might be expected, BILOG's Bayes estimates shrink modestly toward

the population mean, while LOGIST's MLEs are slightly more dispersed

than the true values, with a few outliers for near-chance-level

patterns.

Insert Figures 3, 4, 5, and 6 about here

Item parameter estimates from the two programs for the 15-item

test, plotted against the true values appear as Figures 7 through 9.

BILOG appears to recover the true values better. Ability estimates

are shown in Figure 10. The shrinkage of Bayes estimates and the

dispersion of MLEs noted for the 45-item test have been accentuated.

The authors of LOGIST do not recommend its use for tests as short as

our 15-item trial. These results serve to confirm the prudence of

the authors' guidelines.

04
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Insert Figures 7. 8, 9, and 10 about here

Execution times of the two programs are shown in Table 3.

Obviously CPU seconds are machine dependent, but relati' values

should be more broadly meaningful. Times are comparal .m-lsr the

case of no omits and no not-presented items, but for the more

general model the default settings for LOGIST exhibit an advantage

over BILOG's default settings. The advantage is about 2:1 for the

short test and 1.5:1 for the long test.

Comments on the Example

BILOG appeared to recover generating item parameters better

than LOGIST for the 15-item test, due in large part to the shrinkage

of c parameters toward their estimated mean. The b parameters for

the 15-item test were recovered fairly well by both programs. For

the 45-item test, the results from the two programs were very

similar to each other. Given that both programs ended up at

essentially the same place, one might prefer LOGIST because it got

there faster, or BILOG because of the statistical properties

associated with the procedures by which it traveled. These

statistical properties, however, are only strictly applicable if

omits are not given partial credit, since asymptotic results are not
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available for the 'pseudo' marginal likelihood that than dominates

the BILOG criterio),.

However, the similarity of the results for LOGIST and BILOG on

the 45-item tle.t does not necessarily imply that the user will be

indifferent as to choices in more demanding applications such as

long equating chains or several cycles of item pool refreshment in

adaptive testing. It is quite possible in these circumstances that

potential subtle differences between the 1,wo programs might have

ramifications that lead to an obvious choice. Our first, and

possibly most important, comment then, is to reiterate a caveat: by

no means does this example offer a comprehensive comparison of

LOGIST and BILOG.

We would also like to comment on the difficulty of constructing

any single dataset from which a 'fair' comparison of LOGIST and

BILOG would result. An ideal comparison would employ data generated

with parameters that are (1) realistic and (2) known. But our

notions of what 'realistic' means are determined by what available

programs provide, and we cannot count on any program to tell us the

true parameters for any dataset of reasonable size dataset. Every

program must make arbitrary choices about how to produce estimates

of item parameters poorly supported by the data, and an artificial
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dataset generated from such results can spuriously favor one program

over another by the configuration of poorly determined parameters.

In this connection, Thissen (private communication, 1984) has

pointed out that our simulation may favor LOGIST somewhat by using

previous LOGIST estimates as generating values. From one

perspective, the generating values used in this example can be

viewed as representing fewer than 3 parameters for each item. This

is so because some items have identical lower asymptotes arising

from a common c value estimated for poorly determined c's in the

original application of LOGIST to the TOEFL data. It would not be

unreasonable to find that a procedure that permits such a reduced

parameterization (LOGIST) is more efficient than a procedure that

does not (BILOG). If, on the other hand, previous BILOG estimates

had been used to generate data, the estimated c's might have a

tendency towards a beta distribution, offering an equally fortuitous

but spurious advantage to a subsequent BILOG run. Similar, although

less obvious, influences may also come into play for values of the

other parameters.

The only escape we can see from this potential for circular

reasoning is to accumulate experience over a broad range of

problems. One path that future research should follow has been lead

by Yen (1985), who compared estimates of the two programs over a
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broader range of generating values. A second path would not focus

on parameter estimates but on criteria relevant to specific

applications. Examining recovery of the first test of a circle of

linked tests in equating would be an example of such an experiment.

Conclusion

The joint maximum likelihood approach to estimating parameters

in the 3PL originates with Birnbaum (1968), and the theory of

marginal maximum likelihood estimation originates with Bock and

Lieberman (1970). By setting appropriate switches, the user can ask

LOGIST to produce JML estimates and BILOG to produce MML estimates.

This user will soon find that the unadulterated version of either

approach cannot be counted upon to produce finite and reasonable

parameter estimates. LOGIST and BILOG depart from the original

approaches by employing prior information about how the parameter

estimates should look. The spirit is obviously Bayesian; the

details of LOGIST are less formally so than those of BILOG.

From what we have seen so far, for applications for which

LOGIST is recommended--with longer tests and larger samples, and

when some items are omitted or not reached--the programs provide

similar item parameter estimates, so LOGIST might be preferred on

the basis of costs. With longer tests and larger samples in which

all possible item/examinee interactions are observed, BILOG is
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competitive with LOGIST in terms of cost, and its formal statistical

properties provide useful information about the large sample

properties of the resulting estimates, particularly if priors on the

item parameters are weak.

We would recommend that the user with short tests and/or small

examinee samples consider using BILOG. In these situations, BILOG's

more formal Bayesian procedures are likely to provide reasonable

results, although for small samples of examinees, particularly if

not all possible item/examinee interactions are observed, the

statistical indices based on large-sample MML theory may be less

useful. Assuming that the examinee distribution and item parameter

means are estimated from the data, the effect of the prior in small

samples of examinees will be to produce item parameter estimates

that look less like the 3PL and more like a model with individual

b's but common a and c estimates. If Bayesian ability estimates are

requested fnr short tests, they will be shrunk noticeably towards

the center of the estimated examinee distribution. In these

situations, then, the reasonableness of the results depends upon the

reasonableness of the prior structure.
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Table 1

LOGIST Estimation Steps

Step

Parameter

0 a b c COMCk

1

2

3

4

estimated

fixed

estimated

fixed

fixed

estimated

fixed

estimated

estimated

estimated

estimated

estimated

fixed

estimated

fixed

estimated

not used

estimated

fixed

fixed

*COMC is the MLE estimate of a single common value for the
c parameters of items for which insufficient data is available to
estimate individual c's.
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Table 2

Item Response Data That Yields Finite 2PL Estimates When Fit by JML

(wrong answers coded as zeros; right answers coded as ones)

Item Number

Examinee 1 2 3 4 5 6 7

1 0 0 1 0 0 0 1

2 0 0 1 0 0 1 0

3 0 0 1 0 1 0 0

4 0 0 1 ) 0 0 .0

5 0 1 0 0 0 0 1

6 0 1 0 0 0 1 0

7 0 1 0 0 1 0 0

8 0 1 0 1 0 0 0

9 1 0 0 0 0 0 1

10 1 0 0 0 0 1 0

11 1 0 0 0 1 0 0

12 1 0 0 1 0 0 0

13 0 1 1 1 1 1 0

14 0 1 1 1 1 0 1

15 0 1 1 1 0 I 1

16 0 1 1 0 1 1

17 1 0 1 1 1 1 0

18 1 0 1 1 1 0 1

19 1 0 1 1 0 1 1

20 1 0 1 0 1 1 1

21 1 1 0 1 1 1 0

22 1 1 0 1 1 0 1

23 1 1 0 1 0 1 1

24 1 1 0 0 1 1 1
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Table 3

Execution Times of LOGIST and BILOG on Two Simulated Datasets

15-Item Test CPU Seconds

LOGIST

BILOG (assuming data contain no omitted
or not-presented items)

BILOG (assuming data may contain omitted
and not-presented items)

45-Item Test

19.45

20.14

39.32

LOGIST

BILOG (assuming data contain no omitted
or not-presented items)

BILOG (assuming data may contain omitted
and not-presented items)

E6

37.29

34.26

55,58
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Figure 1. A typical item response function (solid line), with
discrimination, difficulty, and guessing parameters
denoted by a, b, and c.

67

64



/
/

/

/
/

LOGIST and BILOG

-z
I

0
THETA

2 3

65

Figure 2a. Two estimated item response functions for a hard item.
. . .

a = 1.0, b = 2.0, c = .2
. .
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Figure 2b. Two estimated item response functions for an easy item.
. . .

a = 1.0, b = -2.0, c = .2
. .

a = 1.5, b = -1.5, c = .2
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1.5 2 0

true a

+ + + individual c is well estimated
0 0 0 individual c could not be estimated, so COMC is used
* * * individual c is poorly estimated

Figure 3. Estimated a's for BILOG (top) and LOGIST (bottom)
compared to true a's, n = 45.
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+ + + individual c is well estimated
0 0 0 individual c could not be estimated, so COMC is used

2'0 * individual c is poorly estimated

Figure 4. Estimated b's for BILOG (top) and LOGIST (bottom)
compared to true b's, n = 45.
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Figure 5. Estimated c's for BILOG (top) and LOGIST (bottom)
compared to true c's, n = 45.
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Figure 6. Estimated abilities from BILOG (top, EAP estimates) and
LOGIST (bottom, MLE estimates) compared to true values,
n =45.
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+ + + individual c is well estimated

0 0 0 individual c could not be estimated, so COMC is used
I" 14. X... individual c is poorly estimated

Figure 7. Estimated as for BILOG (r.op) and LOGIST (bottom)
compared to true a's, n = 15.
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+ + + individual c is well estimated
o o 0 individual c could not be estimated, so COMC is used
11. * 211. individual c is poorly estimated

Figure 8. Estimated b's for BILOG (top) and LOGIST (bottom)
compared to true b's, n = 15.
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Figure 9. Estimated c's for BILOG (top) and LOGIST (bottom)
compared to true c's, n = 15.
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Figure 10. Estimated abilities from BILOG (top, EAP estimates) and
LOGIST (bottom, MLE estimates) compared to true values,

n = 15.
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